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Abstract

A few studies have highlighted the importance of the respiratory microbiome in modulating the frequency and outcome of

viral respiratory infections. However, there are insufficient data on the use of microbial signatures as prognostic biomarkers

to predict respiratory disease outcomes. In this study, we aimed to evaluate whether specific bacterial community

compositions in the nasopharynx of children at the time of hospitalization are associated with different influenza clinical

outcomes. We utilized retrospective nasopharyngeal (NP) samples (n=36) collected at the time of hospital arrival from

children who were infected with influenza virus and had been symptomatic for less than 2 days. Based on their clinical

course, children were classified into two groups: patients with mild influenza, and patients with severe respiratory or

neurological complications. We implemented custom 16S rRNA gene sequencing, metagenomic sequencing and

computational analysis workflows to classify the bacteria present in NP specimens at the species level. We found that

increased bacterial diversity in the nasopharynx of children was strongly associated with influenza severity. In addition,

patients with severe influenza had decreased relative abundance of Staphylococcus aureus and increased abundance of

Prevotella (including P. melaninogenica), Streptobacillus, Porphyromonas, Granulicatella (including G. elegans), Veillonella

(including V. dispar), Fusobacterium and Haemophilus in their nasopharynx. This pilot study provides proof-of-concept data for

the use of microbial signatures as prognostic biomarkers of influenza outcomes. Further large prospective cohort studies

are needed to refine and validate the performance of such microbial signatures in clinical settings.

INTRODUCTION

Seasonal influenza in children is a major burden on public
health. It is estimated that between 20 to 30% of children
are infected with influenza each winter (WHO). While most
of the children develop uncomplicated influenza illness,
between 1.5 to 4% of infected children are hospitalized for
influenza complications [1] including pneumonia, asthma
exacerbations, neurological complications and death [2].
Risk factors for hospital admission in children include age
<2 years and having underlying medical conditions (such as

neurological disorders, prematurity, immunosuppression,
diabetes, or sickle cell disease) [3]. However, about half of
paediatric hospitalizations from seasonal influenza occur in
children without a high-risk medical condition [4].

From a clinical perspective, failure to identify influenza-
infected patients that have a higher risk of developing severe
disease delays the delivery of appropriate treatment, and
may have profound consequences for the recovery and
long-term health of the patient. It has been reported, in an
adult population, that a delay of 1 day from onset of
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symptoms to hospital admission increased the risk of death
from influenza-caused disease by 5.5% [5]. Several attempts
have been made to develop prognostic indicators that help
to identify patients at risk of severe influenza disease pro-
gression. Influenza viral load is not predictive of clinical
outcome [6], but increased serum levels for several cyto-
kines in adults infected with 2009H1N1 influenza virus are
correlated with disease progression [7], and increased nasal
levels of two proinflammatory cytokines are associated with
severe influenza [6]. However, at present, there are no bio-
markers readily available to the physician at the time of hos-
pital admission that are able to predict the likelihood of
disease progression in all patients.

Improving severe influenza prognosis and treatment
requires a better understanding of influenza disease. Influ-
enza severity is determined by a complex interplay between
viral, environmental and host factors, which is not yet fully
understood and which cannot be comprehended without
looking at the system as a whole [8]. One factor that has
been poorly studied and needs to be integrated in influenza
pathogenesis models is the microbiome, defined as the
microbial communities colonizing the human body (micro-
biota) together with the surrounding environment [9, 10].
Secondary bacterial pneumonia is a well-known cause of
pulmonary complications resulting from influenza infec-
tion, and was reported as a major cause of mortality during
the 1918 pandemic [11]. However, the idea that the micro-
biota might also be involved in influenza pathogenesis is a
recent concept. Leung et al. recently reported that the oro-
pharyngeal microbiota of a pool of patients with H1N1
pneumonia was different from that of patients with non-
H1N1 pneumonia [12]. A second metagenomic study
observed that patients infected with H1N1 had a higher
amount of Proteobacteria in the upper respiratory tract than
was observed in previously published normal reference
nasopharyngeal (NP) microbial profiles [13]. This study
also showed a variation in NP microbiota depending on
patient age. However, sequencing was performed on pools
of anonymized samples with no associated clinical data and
therefore could not link specific changes in microbiota com-
position with different influenza outcomes.

In addition, several studies using mice have shown that the

gut microbiota protects against influenza disease. Antibi-

otic-treated mice exhibit impaired antiviral immune

responses following influenza virus infection, resulting in

delayed viral clearance [14], while oral administration of

probiotics in mice prior to influenza infection reduces viral

titres [15]. Finally, a recent mouse study showed that Staph-

ylococcus aureus colonization in the upper respiratory

mucosa attenuated influenza infection compared with

germ-free mice [16]. However, germ-free mice may not be

appropriate to study the role of the microbiome in influ-

enza, as they have important physiological defects, such as

altered immune systems, which can perturb responses to

influenza infection (reviewed in [17]). Further, there are

significant differences between the microbiomes of mice

and humans [17].

Because of the heterogeneity of the respiratory microbiome
in humans, and the low proportion of severe cases in sea-
sonal influenza, large prospective studies are needed to link
the respiratory microbiome with influenza severity in
patients. As a proof-of-concept, we utilized NP specimens
from a retrospective collection of influenza-positive samples
from children infected with influenza virus with different
disease outcomes, mild or severe, and tested whether spe-
cific bacterial species in the nasopharynx of patients at the
time of hospitalization correlated with influenza disease
severity. We determined a differential microbial signature
discriminating patients with severe and mild influenza.
Such a signature could be used as a prognostic biomarker
for early diagnosis of severe influenza.

RESULTS

Selected patients

We profiled the microbial communities of 36NP samples
collected at the time of hospital arrival from patients classi-
fied retrospectively into two groups based on their clinical
course: patients with mild influenza (n=22) or severe influ-
enza (n=14) outcomes. Patients had been symptomatic for
less than 2 days before hospital admission. None of the
patients received antibiotics for up to 3 weeks before sample
collection. After sampling, severe patients were treated pre-
emptively. The demographics and clinical parameters of the
36 patients are summarized in Table 1 (baseline characteris-
tics for Table 1a and follow-up characteristics for Table 1b).
Among the patients who developed severe influenza, 4
patients had severe respiratory complications requiring ven-
tilatory support and hospitalization in an intensive care unit
(ICU), and 10 patients had neurological complications
requiring hospitalization in the ICU (n=6 from 10; 60%) or
in other units. The most common neurological complica-
tions were coma (n=4 from 10; 40%) and epilepsy (n=5
from 10; 50%). The average time of hospitalization was sim-
ilar among the two severe groups (7.4 and 9.8 days for the
patients with neurological and respiratory complications,
respectively). Patients with mild influenza were either dis-
charged or hospitalized in emergency short-stay units. Their
median time of hospitalization of 1 day corresponds to a
monitoring of more than 6 h in emergency service, which is
considered in France to be a hospitalization. Because of the
insufficiently large number of patients included, no age-
and sex-matched analyses could be performed on this
cohort with adequate power. As the respiratory microbiome
changes with age and sex [18], our results have been
adjusted for these parameters in the rest of the study using
multivariate analysis (see the Methods section). Finally,
cycle threshold (Ct) values from influenza real-time RT-
PCR, as described in the Methods section, were used as a
proxy measure of viral load and were not significantly dif-
ferent between the groups, suggesting that there is no
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relationship between initial viral load and disease outcome,
as previously described [6].

NP microbiota composition of children infected
with influenza virus

Across all 36 respiratory samples, >5.2million high-quality
16S RNA sequences were classified into 300 operational

taxonomic units (OTUs), with 101 OTUs supported by
>1000 reads each (Fig. S1, available in the online Supple-

mentary Material). All OTUs were classified up to the genus
level and 49% were classified up to the species level. The rel-
ative abundance is given for all 300 OTUs in each sample

(Fig. 1a). Five OTUs dominated the NP bacterial profiles
(defined as a relative abundance >50% in at least one

Table 1. (a) Baseline demographic and clinical characteristics of all patients included in the study and (b) clinical evolution and therapeutic

management of all patients included in the study

(a)

Baseline demographics and clinical characteristics Mild

influenza

Severe influenza

Neurological Respiratory

Baseline demographics No. of patients 22 10 4

Sex :male 7 (31.8%) 4 (40%) 3 (75%)

Median age in months (Q1–Q3) 3 (2–4) 16.5

(15–27.8)

17.5

(4.8–56.8)

Characteristics at the time of

admission

Sample nature : NP aspirate 17 (77.3%) 8 (80%) 4 (100%)

Sample nature : NP swab 5 (22.7%) 2 (20%) 0 (0%)

Days since symptom onset : 0 6 (27.3%) 2 (20%) 0 (0%)

Days since symptom onset : 1 12 (54.5%) 4 (40%) 1 (25%)

Days since symptom onset : 2 4 (18.2%) 4 (40%) 3 (75%)

Influenza B virus 3 (13.6%) 2 (20%) 1 (25%)

Influenza A virus (H1N1) 6 (27.3%) 4 (40%) 1 (25%)

Influenza A virus (H3N2) 12 (54.5%) 4 (40%) 2 (50%)

Median influenza RT-PCR Ct (Q1–Q3) 20 (18.4–23.5) 21.5

(21–23.5)

28.5

(23.8–34.6)

Comorbidities*: neurological disorder 0 (0%) 2 (20%) 0 (0%)

Comorbidities* : other (not known as a risk factor for severe

influenza)

1 (4.5 %) 0 (0%) 3 (75%)

Comorbidities : none 21 (95.5%) 8 (80%) 1 (25%)

(b)

Outcome Hospitalized in ICU 0 (0%) 6 (60%) 4 (100%)

Median days hospitalized (Q1–Q3) 1 (0–3) 3 (2 - 3) 8 (7–10.8)

Median days hospitalized in ICU (Q1–Q3) 0 (0–0) 2 (0–3) 7.5 (4.8–

10.8)

Ventilation 0 (0%) 3 (30%) 4 (100%)

Signs of respiratory distress† 6 (27.3%) 0 (0%) 4 (100%)

Bacterial pneumonia complicating influenza 0 (0%) 1 (10%) 1 (25%)

Coma 0 (0%) 4 (40%) 0 (0%)

Encephalitis 0 (0%) 2 (20%) 0 (0%)

Epilepsy 0 (0%) 5 (50%) 0 (0%)

Multiple or prolonged seizure 0 (0%) 5 (50%) 0 (0%)

Death 0 (0%) 0 (0%) 0 (0%)

Treatment No antiviral 20 (90.9%) 3 (30%) 0 (0%)

Antiviral : aciclovir 0 (0%) 3 (30%) 0 (0%)

Antiviral : Tamiflu 2 (9.1 %) 4 (40%) 4 (100%)

No antibiotic 20 (90.9%) 7 (70%) 1 (25%)

Antibiotherapy 2 (9.1%) 3 (30%) 3 (75%)

*None of these comorbidities were previously associated with changes in NP microbiota composition. Neurological disorder: viral encephalitis

sequelae and tuberous sclerosis of Bourneville. Other comorbidities: Down’s syndrome for one patient in the mild influenza group and one patient in

the respiratory complication group; Prader–Willi syndrome for one patient in the respiratory complication group; myopathy for one patient in the

respiratory complication group.

†Signs of respiratory distress included: modification of breathing rate, increased heart rate, colour changes, grunting, nose flaring, retractions,

sweating wheezing, stridor, accessory muscle use, or changes in alertness.
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sample). Among these five OTUs, the genera were Morax-
ella, Staphylococcus, Streptococcus and Haemophilus
(Fig. 1b). Moraxella catharrhalis was found as the dominant
species in 11 out of 36 samples (30%). Moraxella nonlique-
faciens was also detected and was the dominant species in
four samples. Staphylococcus aureus was the dominant spe-
cies in two samples. OTU_4 was only classified to the genus
level – Streptococcus – and was the dominant species in five
samples. Finally, OTU_5 (Haemophilus) was the dominant
OTU in four samples. In the remaining 10 (28%) samples,
there was more than one dominant OTU: for three samples,
there were two major OTUs (with a relative abundance of
between 25 and 50%), and for seven samples the bacterial
profiles were more complex. Importantly, the presence of a
dominant OTU was not significantly associated with influ-
enza outcomes after adjustment with covariates (Table S1).
To validate the bacteria taxonomy classifications inferred
from the 16S ribosomal profiling, we performed shotgun
metagenomic sequencing on a subset of NP specimens
obtained from patients with mild (n=10) and severe (n=10)
influenza. Comparable bacterial compositions were found
in the 16S targeted sequencing and shotgun metagenomic
datasets (Fig. S2).

NP microbiota composition differentiates influenza
outcomes

To examine whether variations in the composition of NP
bacterial communities were related to the clinical and/or
demographic characteristics of the patients, a UniFrac dis-
tance matrix was calculated and used in PerMANOVA anal-
yses against five clinical variables (clinical outcome, days
between sampling and symptom onset, patient’s age,
patient’s sex and nature of sample). This analysis revealed
that differences in NP microbiota composition were strongly
associated with influenza outcomes (P-value=0.00025)
(Fig. 2 and Table S2). Similarly, unsupervised hierarchical
clustering of the samples based on whole-microbiota pro-
files, was able to segregate mild and severe cases, with all but
one patient with mild influenza belonging in the first cluster,

and all but four patients with severe influenza belonged in
the second cluster (Fig. S3). The age of the patients was also
associated with NP microbiota composition in PerMA-
NOVA analysis (P-value=0.03450), but less strongly than
influenza outcome. There was no evidence of significant
interaction between age and clinical outcome in terms of an
effect on NP microbiota composition (Table S2). Finally, we
tested whether there was a difference in microbiota compo-
sition between patients with respiratory or neurological
complications. After adjusting for covariates, the type of
severe influenza complication was not significantly associ-
ated with whole-microbiota profiles (Table S3).

Patients with mild influenza have a less diverse NP
microbiota than patients that develop severe
influenza

We further tested whether NP microbiota diversity (alpha
diversity) was also associated with the patients’ demographics
and/or clinical features. Several diversity indices were calcu-
lated (Fig. 3) and were further used in statistical analysis to
examine whether species diversity in NP samples were related
to five variables (clinical outcome, days between sampling
and symptom onset, patient’s age, patient’s sex, nature of
sample). Using multiway ANOVA, we found that NP micro-
biota diversity, as estimated by the Shannon diversity index
(H), ACE, Chao1, Fisher and Simpson indices, was strongly
associated with influenza outcome (Table S4). Simpson’s
reciprocal index was the only one that was not significantly
associated with influenza outcome (Table S4). This observa-
tion could be linked to the size of the cohort, with this index
being the most sensitive to a lack of power. Patients with mild
influenza had significantly lower bacterial diversity (average
H=0.57) than patients with severe influenza (average
H=2.03). The NP microbiota diversity was weakly associated
with patient age (Table S4). There was no evidence of signifi-
cant interaction between age and clinical outcome, in terms
of an effect on NP microbiota diversity (Table S4). In addi-
tion, there was no significant difference in microbiota diver-
sity between patients with neurological and respiratory

Table 2. Taxonomy and average relative abundance for the OTUs differentially abundant between mild and severe influenza groups after adjusting

for covariates (age, sex, sample nature and time since symptom onset)

Genus Species Average relative abundance in

mild influenza (%)

Average relative abundance in

severe influenza (%)

P-

value

OTU_3 Staphylococcus Staphylococcus aureus 9.4164 0.0094 0.0136

OTU_10 Prevotella Prevotella melaninogenica 0.2967 2.3501 0.0381

OTU_16 Prevotella NA 0.3789 2.1213 0.0011

OTU_22 Streptobacillus NA 0.2686 2.0337 0.0021

OTU_31 Porphyromonas NA 0.0001 0.3730 0.0220

OTU_64 Veillonella Veillonella dispar 0.0527 0.6623 0.0234

OTU_80 Fusobacterium NA 0.0040 0.3361 0.0082

OTU_85 Haemophilus NA 0.0404 0.6245 0.0065

OTU_92 Lachnospiracea_incertae_sedis NA 0.0358 0.0954 0.0381

OTU_101 Granulicatella Granulicatella elegans 0.0621 0.2280 0.0082

OTU_148 Veillonella NA 0.0381 0.1316 0.0409

OTU_355 Veillonella NA 0.0003 0.0152 0.0442
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OTU_269;Simonsiella;NA
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OTU_236;Stella;NA
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OTU_203;Mycoplasma;Mycoplasmaorale
OTU_358;Haemophilus;NA
OTU_294;Prevotella;NA
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OTU_163;Treponema;NA
OTU_341;Alkaliphilus;NA
OTU_386;Desulfonispora;NA
OTU_263;Treponema;Treponemasp.
OTU_361;Caenispirillum;NA
OTU_326;Meiothermus;Meiothermussilvanus
OTU_317;Kingella;Kingellaoralis
OTU_261;Filifactor;Filifactoralocis
OTU_403;Granulicatella;NA
OTU_316;Prevotella;NA
OTU_12;Corynebacterium;Corynebacteriumargentoratense
OTU_103;Desulfuromusa;NA
OTU_335;Prevotella;NA
OTU_260;Prevotella;NA
OTU_238;Capnocytophaga;NA
OTU_383;Neisseria;NA
OTU_147;Roseburia;NA
OTU_217;Moraxella;Moraxellanonliquefaciens
OTU_325;Moraxella;Moraxellanonliquefaciens
OTU_24;Moraxella;NA
OTU_197;Leptotrichia;NA
OTU_59;Leptotrichia;NA
OTU_111;Lachnospiracea_incertae_sedis;NA
OTU_118;Streptobacillus;NA
OTU_21;Prevotella;Prevotellasp.
OTU_154;Fusobacterium;NA
OTU_213;Prevotella;NA
OTU_194;Lachnospiracea_incertae_sedis;NA
OTU_136;Veillonella;NA
OTU_51;Parvimonas;NA
OTU_130;Tannerella;Tannerellasp.
OTU_53;Hydrogenobaculum;NA
OTU_70;Peptostreptococcus;Peptostreptococcusstomatis
OTU_57;Leptotrichia;Leptotrichiabuccalis
OTU_196;Prevotella;Prevotellashahii
OTU_139;Actinobacillus;NA
OTU_141;Alkaliphilus;NA
OTU_167;Peptostreptococcaceae_incertae_sedis;NA
OTU_243;Aggregatibacter;Aggregatibactersp.
OTU_134;Methylocapsa;NA
OTU_125;Leptotrichia;NA
OTU_224;Capnocytophaga;NA
OTU_87;Capnocytophaga;NA
OTU_104;Campylobacter;Campylobactershowae
OTU_201;Prevotella;NA
OTU_150;Porphyromonas;NA
OTU_180;Prevotella;NA
OTU_56;Moraxella;NA
OTU_299;Corynebacterium;Corynebacteriumdurum
OTU_97;Aggregatibacter;Aggregatibactersegnis
OTU_117;Prevotella;NA
OTU_48;Neisseria;Neisseriaelongata
OTU_39;Streptococcus;Streptococcussanguinis
OTU_75;Abiotrophia;Abiotrophiadefectiva
OTU_100;Catonella;Catonellasp.
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OTU_91;Capnocytophaga;Capnocytophagasputigena
OTU_65;Rothia;Rothiasp.
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OTU_73;Streptococcus;Streptococcusgordonii
OTU_110;Fusobacterium;Fusobacteriumnucleatum
OTU_62;Fusobacterium;Fusobacteriumnucleatum
OTU_161;Streptococcus;Streptococcusconstellatus
OTU_115;Treponema;NA
OTU_128;Haemophilus;Haemophilusinfluenzae
OTU_106;Kingella;Kingelladenitrificans
OTU_14;Schlegelella;NA
OTU_76;Leptotrichia;Leptotrichiasp.
OTU_355;Veillonella;NA
OTU_31;Porphyromonas;NA
OTU_166;Actinomyces;Actinomycessp.
OTU_105;Butyricicoccus;NA
OTU_20;Leptotrichia;NA
OTU_93;Ralstonia;NA
OTU_81;Actinomyces;Actinomycesodontolyticus
OTU_67;Eubacterium;NA
OTU_72;Geopsychrobacter;NA
OTU_184;Actinomyces;Actinomyceslingnae
OTU_112;Mogibacterium;Mogibacteriumvescum
OTU_86;Moryella;NA
OTU_319;Streptococcus;NA
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OTU_34;Leptotrichia;NA
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OTU_29;Klebsiella;NA
OTU_8;Pseudomonas;NA
OTU_54;Staphylococcus;Staphylococcusepidermidis
OTU_124;Propionibacterium;Propionibacteriumacnes
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Fig. 1. NP microbiota composition associated with each respiratory sample. (a) heat map displaying the relative abundance of the 300

OTUs detected in each NP sample. Relative abundance is shown with a black to white gradient scale, with OTUs that were not quanti-

fied in white, and OTUs with a relative abundance of 1 in black. The samples were ordered based on patient group and sample num-

ber. OTUs were clustered based on their relative abundance values across samples using Euclidian distances and a complete linkage
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complications (Table S5). Overall, we found that increased
bacterial diversity in the upper respiratory tract was associ-
ated with influenza severity.

Differential microbial abundance between patients
with mild or severe influenza

Statistical analysis to characterize the differential microbial
species abundance between patients with mild influenza and
patients with severe influenza was performed using a gener-
alized linear model, adjusting for age, sex, time since symp-
tom onset and sample nature. Twelve OTUs were found to
be differentially abundant between the two groups of
patients (Fig. 4a). The average abundance in each group for
the 12 differential OTUs is given Table 2. Among the differ-
ential OTUs, one was among the five most abundant OTUs
detected in the respiratory microbiome profiles: Staphylo-
coccus aureus was more abundant in patients with mild
influenza than in patients with severe influenza (Table 2).

The remaining 11 differential OTUs had limited abundance
(<3% on average) and were all more abundant in patients
with severe influenza. The genera of these 11 OTUs were:
Prevotella for two of them, Streptobacillus, Porphyromonas
and Veillonella for three of them, and Fusobacterium, Hae-
mophilus, Lachnospiracea incertae sedis and Granulicatella.
Some of these OTUs were detected almost exclusively in
patients with severe influenza, for example Porphyromonas
(OTU_31) was detected in 11 (76%) patients with severe
influenza, but only 2 (9%) patients with mild influenza.

In addition, we performed a similar statistical analysis on the
severe influenza group only, to determine whether there were
differences between patients with neurological and respira-
tory complications. Seven OTUs (Moraxella catarrhalis, Acti-
nomyces, Corynebacterium, Dolosigranulum pigrum,
Chryseobacterium, Prevotella and Parvimonas micra) were
found to be differentially abundant (Fig. 4b and Table 3).
Except forMoraxella catarrhalis and Parvimonas micra, these

function. (b) Bar plot showing relative abundance of the five most abundant OTUs in each sample, coloured by OTUs. The samples

were ordered as in (a).
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OTUs were significantly more abundant in neurological
severe forms than in respiratory severe forms. As already
described, Moraxella catarrhalis remain abundant in both
severe forms (17.39% vs 29.89%), unlike all other OTUs,
with limited abundance in both groups (<1% in average).

Minimal microbial signatures classify mild versus
severe cases

To determine whether a smaller subset of OTUs could effi-
ciently classify patients into mild and severe groups, we used
an association rule mining algorithm among differentially
abundant OTUs. To test the signatures’ predictive perfor-
mance, we used the trained rules to determine the influenza
disease severity of patients excluded from the training set
[leave-one-out cross-validation (LOOCV)]. In addition, only
rules that were found in all cross-validation instances were
considered to be robust. This analysis revealed 5 robust asso-
ciation rules comprising two to three OTUs able to classify
mild versus severe patients with cross-validated sensitivity of
up to 93% and specificity of up to 100% (Table 4). For
instance, the quantification of OTU_22 (Streptobacillus) at a

relative abundance higher than 8.8e-06 and the quantification
of OTU_85 (Haemophilus) at a relative abundance higher
than 4.8e-05 predict that the patient will develop a severe
influenza with a sensitivity of 92.86% and a specificity of
90.91%. The performance of these different rules needs to be
validated in prospective cohort studies, but these data indicate
that microbial signatures comprising very few bacterial spe-
cies have the potential to predict influenza outcomes with
substantial accuracy.

Altogether, these results demonstrate that differences in NP
microbiota composition early after infection are associated
with influenza severity and provide proof-of-concept data
for the use of microbial signatures as prognostic biomarkers
of influenza outcomes in a clinical setting.

DISCUSSION

Influenza virus transmission and pathogenesis in humans is
unpredictable at the population and individual level in
terms of clinical severity. While rapidly identifying patients
at risk of influenza complications is crucial for patient
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management and survival, there is currently no host bio-
marker assay available to predict influenza severity at the
time of infection. In this study, we used a retrospective col-
lection of early NP samples from children infected with
influenza virus to test the feasibility of using a prognostic
microbial signature to predict influenza disease outcome in
a clinical setting. By comparing the relative abundance and
diversity of microbial populations in the upper respiratory
tract of children at the time of hospitalization, we identified
bacterial profiles that differentiated children that developed
severe disease versus non-progressive mild influenza infec-
tion using five different diversity indexes. All but one

showed statistical differences between these two groups.
This difference was not significant for Simpson’s reciprocal
index, the most dependent on cohort size (as reviewed in
[19]). To our knowledge, this is the first study associating
influenza severity with NP bacterial composition in
children.

There are a limited number of studies describing the compo-

sition of the respiratory tract microbiota in healthy and dis-

eased children. Studies profiling the NP microbiota have

reported that healthy children younger than 2 years old have

their upper respiratory tract colonized by one predominant
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commensal bacterial genera consisting of Moraxella, Hae-
mophilus, Streptococcus, Prevotella, Dolosigranulum, Staphy-
lococcus, Corynebacterium, Flavobacteria or Neisseria [18,
20–22]. Similarly to these studies, we found that most of the
children infected with influenza had microbial compositions
in their nasopharynx that were dominated by one bacterial
species, with Moraxella, Streptococcus, Haemophilus and
Staphylococcus representing the most abundant bacterial
genera. However, the nasopharynx microbiomes of children
infected with influenza were not colonized with Gram-
positive commensal species (Anoxybacillus, Dolosigranulum,
Corynebacterium and Lactococcus). It is possible that influ-
enza virus induced a decrease in the abundance of these spe-
cies early after infection. Interestingly, these Gram-positive
commensal species have been shown to control the abun-
dant colonization of pathobionts such as H. influenza,
S. pneumonia, S. aureus, orM. catarrhalis and enhanced risk
of acquiring acute otitis media [21, 23], pneumonia and
bronchiolitis [24]. In future studies, it will be interesting to
follow the respiratory microbiome dynamics longitudinally
prior and post-influenza infection to characterize early
virus–microbiome interactions.

The most common genus found in our population wasMor-
axella, with two main species, M. catarrhalis and M. nonli-
quefaciens. High abundance of M. nonliquefaciens was
previously associated with viral pneumonia caused by ade-
novirus, rhinovirus or enterovirus, respiratory syncytial
virus, or human metapneumovirus infections [20]. In addi-
tion, Moraxella versus Alloiococcus colonization is associ-
ated with increased respiratory syncytial virus infections

and severity [22]. As we could not profile the NP microbiota
of healthy children in parallel with influenza-infected chil-
dren, we could not determine whether Moraxella coloniza-
tion was also associated with influenza infection, but we
found that M. catarrhalis and M. nonliquefaciens relative
abundance were not predictive of influenza severity after
adjustment for covariates, but were predictive of neurologi-
cal versus respiratory complications. Further evaluation of
the effect of specific virus–microbiome interactions is neces-
sary to better define the respiratory microbiota and its influ-
ence on clinical disease outcomes for acute respiratory
infections in children.

In our study, severe influenza infection was predicted by
increased bacterial diversity in the nasopharynx of children.
In addition, a microbial signature of 12 OTUs was able to dis-
criminate patients developing severe versus mild influenza.
Eleven of these 12 OTUs had higher abundance in severe
patients, and included the following genera: Prevotella, Strep-
tobacillus, Porphyromonas, Granulicatella, Veillonella, Fuso-
bacterium, Lachnospiracea incertae sedis and Haemophilus
spp. Except for Haemophilus, these genera all belong to obli-
gate or facultative anaerobic bacteria. The species that were
found to be more abundant in patients with severe influenza
included Prevotella melaninogenica, and Veillonella dispar –
which are anaerobic Gram-negative bacteria that are part of
the normal oral [25] and respiratory tract microbiota [26]
and can cause anaerobic pulmonary infections [25] or menin-
gitis and endocarditis [27] – and Granulicatella elegans, a
member of the nutritionally variant streptococci, which are
common components of the oral microbiota that have been

Table 3. Taxonomy and average relative abundance for the seven OTUs that were differentially abundant between patients with respiratory and

neurological complications after adjustment for covariates (age, sex, nature of sample, time since onset of symptoms)

Genus Species Average relative abundance in patients

with neurological complications (%)

Average relative abundance in patients

with respiratory complications (%)

P-

value

OTU_1 Moraxella Moraxella catarrhalis 17.3854 29.8941 0.0249

OTU_9 Actinomyces NA 0.7323 0.0001 0.0107

OTU_19 Corynebacterium NA 0.1472 0.0627 0.0118

OTU_28 Dolosigranulum Dolosigranulum pigrum 0.3227 0.0094 0.0425

OTU_61 Chryseobacterium NA 0.1308 0.0004 0.0124

OTU_89 Prevotella NA 0.1176 0.0040 0.0301

OTU_113 Parvimonas Parvimonas micra 0.0037 0.2264 0.0424

Table 4. LOOCV performance characteristics of minimal microbial signatures in discriminating patients with mild versus severe influenza outcomes

Only the rules predicted in all cross-validation instances are displayed in this table. Sensitivity and specificity were calculated using out-of-sample

predictions. The rules are sorted based on specificity values, and are placed in descending order.

Patient classified as severe influenza if the following OTUs are detected (with relative abundance) Sensitivity Specificity

OTU_16 (>7.6e-05)&OTU_22 (>8.8e-06)&OTU_148 (>3.8e-05) 78.57 100

OTU_22 (>8.8e-06)&OTU_101 (>1.3e-05)&OTU_148 (>3.8e-05) 78.57 95.45

OTU_22 (>8.8e-06)&OTU_85 (>4.8e-05) 92.86 90.91

OTU_22 (>8.8e-06)&OTU_101 (>1.3e-05) 85.71 90.91

OTU_22 (>8.8e-06)&OTU_64 (>5.2e-05) 85.71 90.91
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associated with endocarditis and septicaemia [28]. Only one
OTU was more abundant in patients with mild symptoms:
Staphylococcus aureus. This is in line with the study of Wang
et al., which reported that S. aureus priming prevents influ-
enza-mediated lung injury in a mouse model [16]. In the pro-
posed mechanism S. aureus induces monocyte polarization
into M2 alveolar macrophages via Toll-like receptor 2 signal-
ling, which inhibits influenza-mediated lethal inflammation
[16]. Based on our pilot study, the higher abundance of
S. aureus in mild non-progressors could explain the lack of
severe clinical manifestations observed in our patient cohort,
while the presence of a diverse nasopharynx microbiota con-
taining multiple pathobionts significantly increased the risk
of acquiring severe influenza-related disease. Furthermore,
we compared each of the two severe influenza groups. Seven
OTUs were significantly more diverse in one group, the respi-
ratory group for two of them (Moraxella catarrhalis and Par-
vimonas micra), and the neurological group for the rest of
them (Actinomyces, Corynebacterium, Dolosigranulum pig-
rum, Chryseobacterium and Prevotella). Physiologically, all of
these bacteria were commensal of the respiratory tract and
oral cavity. They were mainly described in pneumonia and
periodontitis infections, but could also be the cause of central
nervous system infections, bone infections and endocarditis
[29–31]. Interestingly, Dolosigranulum pigrum, which is asso-
ciated with the development of kerato-conjunctivitis, has
already been characterized in the respiratory tract micro-
biome as belonging to a health-associated community that
has been developing recently in children born by caesarean
section [32]. Note that this analysis remains to a large extent
underpowered because of the small number of patients in
each severe group in this study.

It is noteworthy that the use of microbial signatures to pre-
dict clinical outcomes for influenza could be reduced to
only two–three OTUs. If this proves to be robust in future
studies, such signatures could open up the possibility of
developing a real-time clinical assay using current technol-
ogy. Rapid PCR panels that accurately quantify both bacte-
rial and viral species [33] could facilitate a practical
implementation of prognostic microbial signature-based
assays simultaneously with acute respiratory virus diagnos-
tics in a clinical setting.

Our study has limitations that are inherent in its retrospec-
tive nature. First, despite the large number of samples
(n=372) from children infected with influenza virus avail-
able in our collection, only 36 samples (9.7%) met our selec-
tion criteria. Because of our relatively small cohort, we
could not match the patient groups in sex and age. As age
and sex were described as being important factors that mod-
ify the microbiota in the nasopharynx [18, 22], we had to
adjust for these potential confounders in statistical models.
We found that the main factor influencing the NP micro-
biota was age. Sex was not associated with microbiota com-
position and diversity, as expected for young prepubescent
children. The microbiome was also described as changing
with seasons [18]. However in our study, samples were

collected over different years, but all were collected during
the influenza season (January–March), so there was no sea-
sonal effect to account for. Finally, due to the retrospective
nature of our pilot study we could not compare the perfor-
mance of our signature with existing clinical severity scores,
such as the pediatric risk of mortality (PRISM III). The dif-
ferences in number between the neurological and respira-
tory groups (n=10 vs n=4) could be explained by the
administration of antimicrobial therapeutics in patients
with respiratory complications before the NP sample was
collected. Indeed, children with respiratory distress were
most likely to have had pre-emptive antibiotics adminis-
tered at hospital admission before sampling, and so were
excluded from analyses. In contrast, when children develop-
ing neurological complication had antibiotics administered,
this was mainly during hospitalization after NP sample was
collected, and the treatments administered prior to admis-
sion were mostly anti-epileptic treatments.

Future studies will involve the enrolment of prospective
cohorts of children admitted in the emergency departments
with longitudinal sample and clinical data collection to vali-
date our microbial signature performance and analyse host–
virus–microbiome interactions. Studies that integrate
microbiome analysis with a systems biology approach to
influenza pathogenesis will accelerate the development of
novel diagnostic tools and personalized therapeutics to com-
bat influenza virus infections in children.

METHODS

Ethical statement

Respiratory samples (NP aspirate or swab) were collected
for regular disease management during hospital stays and
no additional samples were taken. For the purpose of this
study, patient confidentiality was strictly protected and
informed consent was obtained. This study was approved
by the ethical committee of Hospices Civils de Lyon on 14
October 2014. The study was also approved by the Univer-
sity of Washington IRB under expedited category 5 (human
subjects application #49811).

Patient selection

We analysed 372 clinical records from children (�15 years)
who were admitted to a paediatric hospital (Hôpital
Femme-M�ere-Enfant, Hospices Civils de Lyon, France) in
2011–2014. All of the analysed samples tested positive for
influenza A or B virus using the respiratory multi-well sys-
tem MWS r-gene kit (bioM�erieux, Marcy-l’�etoile, France)
during routine testing in the virology department of the
University Hospital of Lyon. Ct could be obtained and were
considered to be an estimated viral load in the sample.

In order to define a prognostic signature, only patients who
were symptomatic for less than 2 days and had a respiratory
sample collected at the time of hospital arrival were selected.
Based on their clinical course after sample collection,
patients were classified into two groups: patients with mild
influenza or patients with respiratory or neurological
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complications (the severe influenza group). The criteria
used for classifying children in the severe influenza group
with respiratory complications were: utilization of invasive
or non-invasive ventilation, blood gas alteration (hypoxemia
<95% in arterial sample) and hospitalization in the ICU for
respiratory complications. Neurological complications were
defined as symptoms that affected the central or peripheral
nervous system, including seizures, encephalopathy,
encephalitis, or any focal neurological symptom [34].
Patients with neurological complications were hospitalized
either in the ICU or in neurology units specializing in the
management of encephalitis or epilepsy. We excluded
patients with incomplete clinical files, as well as patients
who had received antibiotics prior to respiratory sample col-
lection, as this treatment likely perturbs the microbiome.
Other exclusion criteria included known risk factors for
severe influenza (defined as chronic respiratory diseases,
cardiac diseases, metabolic diseases, immunosuppression,
etc.) and known chronic disease associated with respiratory
microbiota dysbiosis (such as severe asthma, etc.) [3]. Note
that two patients had Down’s syndrome, one in the mild
influenza group and one in the severe influenza group. In
addition, in the respiratory group one patient presented
with Prader–Willi syndrome and another presented with an
uncategorized myopathy. While individuals with Down’s
syndrome, Prader–Willi syndrome and myopathy are
known to be at risk of respiratory problems, these comor-
bidities have not been associated with modifications in the
NP microbiome, and so we did not exclude these patients.
In total, 72 patients were selected, including 42 patients with
mild influenza, 11 patients with respiratory distress symp-
toms and 19 patients with neurological complications. We
extracted DNA and RNA using Nuclisens EasyMag. Only 36
patients had samples with sufficient quantity and quality of
DNA for sequencing, including 22 patients with mild influ-
enza, 4 patients with respiratory distress symptoms and 10
patients with neurological complications.

16S rRNA sequencing and analysis

Genomic DNA was extracted from de-identified patient
respiratory samples (n=36). Custom primers were synthe-
sized to amplify a 510 bp fragment containing variable
regions V1–V3 of the 16S ribosomal gene. Briefly, 5 ng of
genomic DNA from each sample was used as a starting tem-
plate to generate the V1–V3 amplicon libraries. All genomic
DNA was subjected to 20 cycles of PCR (Failsafe, Epicentre)
and the 16S amplicons were cleaned using 0.8X AMPure XP
beads (Beckman Couter, Inc.) following the manufacturer’s
instructions. Nextera dual index adaptors (Nextera XT
adaptors, Illumina, Inc.) were incorporated by performing
10 PCR cycles (Failsafe, Epicentre), cleaned using 1.1X
AMPure XP beads (Beckman Couter, Inc,), quantified using
a qubit (DNA high sensitivity, Life Technologies) and multi-
plexed using equal molar ratios of DNA for each sample.
The final 16S libraries were loaded on a MiSeq sequencer at
2 pM with 5% PhiX control and sequenced using custom
Illumina read primers to eliminate the V1–V3 16S primer
sequences (Table S6). Each sample had an average of 150K

read depth (300 bp, paired end) and all 16S ribosomal
sequences were classified using the UPARSE metagenomic
pipeline [35]. Briefly, this pipeline removed low-quality
reads, merged the paired reads to generate ~430 bp frag-
ments, removed sequence artifacts (chimaeric sequences
and sequence errors), mapped full-length reads to a highly
curated 16S ribosomal database derived from the RDP 16S
training set (v14), identified sequence reads to genus/species
level with a 97% cut-off based on OTU classification and
generated summary tables for downstream statistical analy-
ses. In total, all samples passed our cut-off of at least 50 000
high-quality 16S DNA sequence reads per sample and all
OTUs were classified to the genus level (Fig. S1). Rarefac-
tion curves were performed to verify that sampling had
exhausted the diversity at the sequence read depth cut-off of
50 000 reads per sample (Fig. S1c). For classification to the
species level, we blasted the OTU representative sequences
against the SILVA Ref NR99 database (release 119), from
which uncultured species were removed. We used BLASTN

with the following parameters: ‘-evalue 1e-50 -perc_identity
99. The BLAST results were further filtered to only keep
results that were identical (up to the genus level) to the
UPARSE classification.

The raw sequence data were deposited at SRA
(SUB1938413).

Metagenome sequencing and analysis

Genomic DNA (5 ng) from 10 mild and 10 severe influenza
patients were fragmented and tagged using Nextera transpo-
sase following the manufacturer’s instructions (Nextera XT
DNA library kit, Illumina). Dual-index adaptors were incor-
porated by PCR (14 cycles) and the final libraries were mul-
tiplexed for sequencing. The final library was loaded on a
NextSeq 500 using a 300 cycle high-output kit. All reads
were demultiplexed, the adaptor sequences were removed
and low-quality reads were discarded. High-quality reads
were aligned to a reference mammalian ribosomal RNA
database and the human hg19 genome using STAR aligner.
Unmapped nonhuman reads were classified using Kraken
metagenome analysis software and the MiniKraken DB
using the default settings [33]. Genus/species level identifi-
cation, including total read counts for each bacterial group,
was determined.

Statistical analysis

All statistical analyses were performed using R statistical
Software. The R ‘phyloseq’ package [36] was used to calcu-
late abundance-based richness estimators (e.g. Chao1 and
ACE) and diversity indices (e.g. Shannon, Simpson and
Fisher). Multi-way ANOVA (type III) was used to identify
the covariates associated with each diversity index. The R
phyloseq package was also used to calculate the distance
metrics (Bray–Curtis and weighted Unifrac) and visualize
the samples in two dimensions using non-metric multidi-
mensional scaling (NMDS). Beta diversity analysis was per-
formed on relative abundance data (i.e. proportions, the
counts are divided by total library size). Permutational
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multivariate analysis of variance (PerMANOVA) was per-
formed using the adonis function in the R ‘vegan’ package
[37] to test the ability of variables (patient group, sex and
age, nature of sample, days since onset of symptoms) to
account for the observed variance in microbial profiles.
Finally, statistical analyses for the differential abundance of
mapped OTU reads were conducted using the ALDEx2 R
package with a generalized linear model (GLM) using the
aldex.glm function [38]. We modified the aldex.glm func-
tion to enable the effect of several variables in the glm model
to be tested, rather than only testing one variable, as in the
default aldex.glm function. The covariates that were taken
into account were age, sex, time since the onset of symp-
toms and nature of sample. Differential OTUs were defined
using a P-value cut-off of 0.05.

To determine whether small sets of OTUs could classify the
patients, we used classification based on association rules
using the R ‘arules’ package. For this analysis, the relative
abundance matrix of differentially abundant OTUs was
transformed into a binary matrix based on the median rela-
tive of each OTU, with 1 meaning that the relative abun-
dance of OTU_x in sample (i) is greater than the median
value of OTU_x across all samples. The rules were mined
with support >0.3 and confidence >0.8. Redundant rules
were further pruned. We judged the robustness of the rules
using an LOOCV approach. For each subject, association
rules were predicted on all other subjects, excluding the one
for which we made a prediction. After we had performed
this procedure for all subjects, we selected the rules that
were found in all instances and calculated their sensitivities
and specificities from predicted versus true classifications.
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